
Chapter 1

Hidden Markov Models

1.1 Introduction

A hidden Markov model (HMM) is a statistical model for ordered data. The
observed data is assumed to have been generated by a unobservable statistical
process of a particular form. This process is such that each observation is
coincident with the system being in a particular state. Furthermore it is a
first order Markov process: the next state is dependent only the current state.
The model is completely described by the initial state probabilities, the first
order Markov chain state-to-state transition probabilities, and the probability
distributions of observable outputs associated with each state.
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Figure 1.1: A representation of the hidden Markov model, with hidden nodes
in underlying system states q, and observable variables O.

1.2 Notation

Our notation is similar to that employed by Rabiner [11] and is as follows: a hid-
den Markov model λ with N states is composed of initial state probabilities π =
(π1, . . . πN ), state-to-state transition probabilities A = (a11, . . . , aij , . . . , aNN ),
and the observable output probability distributions B = (b1, . . . , bN ). The ob-
servable outputs can be either discrete or continuous. In the discrete case, the
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10 CHAPTER 1. HIDDEN MARKOV MODELS

output probability distributions are denoted by bi(m), where m is one of M
discrete output symbols. In the continuous case, the output probability dis-
tributions are denoted by bi(y, θi1, . . . , θij , . . . , θiM ) where y is the real-valued
observable output (scalar or vector) and the θijs are the parameters describ-
ing the output probability distribution. For the normal distribution we have
bi(y, µi,Σi).

1.3 Model optimization problem

For the series of observations O = O1O2 · · ·OT , we consider the possible model
state sequences Q = q1q2 · · · qT to which this series of observations could be
assigned. For a given fixed state sequence Q, the probability of the observation
sequence O is given by

P (O|Q,λ) =
T∏

t=1

P (Ot|qt,λ). (1.1)

Assuming statistical independence of observations,

P (O|Q, λ) = bq1(O1)bq2(O2) · · · bqT (OT ). (1.2)

The probability of the given state sequence Q is

P (Q|λ) = πq1aq1q2aq2q3 · · · aqT−1qT . (1.3)

The joint probability of O and Q is the product of the above, so that

P (O, Q|λ) = P (O|Q,λ)P (Q|λ), (1.4)

and the probability of O given the model is obtained by summing this joint
probability over all possible state sequences Q:

P (O|λ) =
∑

all Q=q1q2···qT

πq1bq1(O1)aq1q2bq2(O2) · · · aqT−1qT bqT (OT ). (1.5)

Although other optimization criteria are possible, most commonly we wish
to optimize the model parameters so as to maximize this likelihood P (O|λ). We
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can pose this as non-convex, non-linear optimization problem:

Maximize : P (O|λ)

Subject to :
N∑

i=1

πi = 1

πi ≥ 0, i = 1, . . . , N
N∑

j=1

aij = 1, i = 1, . . . , N

aij ≥ 0, i = 1, . . . , N, j = 1, . . . , N
M∑

m=1

bi(m) = 1, i = 1, . . . , N

bi(m) ≥ 0, i = 1, . . . , N, m = 1, . . . ,M. (1.6)

Note that the above is for the discrete output case. In the case of continuous
outputs, the last two constraints are replaced by∫

Y
bi(y)dy = 1, i = 1, . . . , N

bi(y) ≥ 0, i = 1, . . . , N, y ∈ Y. (1.7)

This problem is often presented in terms of equivalent problem of maximizing
the log likelihood log P (O|λ).

1.4 Expectation-Maximization

The most common optimization technique employed to solve this problem is
the Expectation-Maximization (EM) algorithm [7, 10]. We can pose the EM
algorithm generally as follows: we wish to maximize a likelihood P (λ) where λ
is a set of model parameters. Given p(x,λ), a positive real-valued function on
x× Λ measurable in x for fixed λ with measure µ, we define

P (λ) = E[p(x,λ)|λ] =
∫

X
p(x,λ)dµ(x) (1.8)

and

Q(λ, λ′) = E[log p(x,λ′)|λ] =
∫

X
p(x,λ) log p(x,λ′)dµ(x). (1.9)

Here x is the so-called hidden variable, while p(x,λ) is often referred to as the
complete data likelihood. The function Q is often referred to as the Q-function.
Note that the function p may be a function of the observable outputs y as well
as the parameters of the model λ, so p = p(x, y, λ). In this case, the integrals
are over X → Y (X).
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Assume Q(λ, λ) ≥ Q(λ, λ). Then P (λ) ≥ P (λ). Proof:

log P (λ)/P (λ) = log
∫

X
p(x, λ)dµ(x)/P (λ)

= log
∫

X
[p(x, λ)dµ(x)/P (λ)]p(x,λ)/p(x,λ)

≥
∫

X
[p(x, λ)dµ(x)/P (λ)] log[p(x, λ)/p(x,λ)]

= (P (λ))−1[Q(λ, λ)−Q(λ, λ)] ≥ 0.

From this we can show that for a transformation F that if F(λ) is a critical
point of Q(λ, λ′) as a function of λ′, then the fixed points of F are critical points
of P . This gives us the EM algorithm:

1. Start with k = 0 and pick a starting λ(k).

2. Calculate Q(λ(k),λ) (expectation step).

3. Maximize Q(λ(k),λ) over λ (maximization step). This gives us the trans-
formation F .

4. Set λ(k+1) = F(λ(k)). If Q(λ(k+1),λ)−Q(λ(k),λ) is below some threshold,
stop. Otherwise, go to step 2.

Note that this method is inherently sensitive to the initial conditions λ(0), and
only guarantees eventual convergence to a local maxima of the objective func-
tion, not the global maximum. Nevertheless, it is widely used in practice and
often achieves good results.

1.5 Optimization procedure for the HMM

We now present a procedure for calculating the optimal HMM parameters, based
on that first suggested by Baum and colleagues [1–5]. For the hidden Markov
model, we have

p(q, O, λ) = πq1bq1(O1)aq1q2bq2(O2) · · · aqT−1qT bqT (OT ), (1.10)

with P (λ) = E[p(q, O, λ)|λ] defined as in (1.5). If we let z be a set of state-
indicator indicator vectors z = (z1, . . . , zT ) such that zit = 1 if qt = i, zit = 0
otherwise, then we can represent the complete data log likelihood as

N∑
i=1

zi1 log πi +
N∑

i=1

N∑
j=1

T−1∑
t=1

zitzj,t+1 log aij +
N∑

i=1

T∑
t=1

zit log bi(Ot). (1.11)

From this we can calculate

Q(λ, λ(k)) =
N∑

i=1

τ (k)
i1 log πi +

N∑
i=1

N∑
j=1

T−1∑
t=1

τ (k)
ijt log aij +

N∑
i=1

T∑
t=1

τ (k)
it log bi(Ot)

(1.12)
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where

τijt = P (Zit = 1, Zj,t+1 = 1|O,λ) t = 1, . . . , T − 1, (1.13)
τit = P (Zit = 1|O,λ) t = 1, . . . , T, (1.14)

and Z is a probabilistic component indicator variable analogous to z.
We wish to maximize Q(λ, λ(k)) over λ. We can view Q as the sum of three

separable components, Q = Q1 + Q2 + Q3:

Q1(λ, λ(k)) =
N∑

i=1

τ (k)
i1 log πi, (1.15)

Q2(λ, λ(k)) =
N∑

i=1

N∑
j=1

T−1∑
t=1

τ (k)
ijt log aij , (1.16)

Q3(λ, λ(k)) =
N∑

i=1

T∑
t=1

τ (k)
it log bi(Ot). (1.17)

Maximization of each component may be pursued separately. However, a direct
solution by calculation of the critical points of the first two components is not
possible. For instance,

∂Q1

∂πi
=

∂
∑N

i=1 τ (k)
i1 log πi

∂πi
=

τ (k)
i1

πi
= 0 (1.18)

is clearly not useful, and derivatives of Q2 fare similarly.
Instead we will solve the general convex optimization problem

Minimize : f(x) = −
N∑

i=1

ci log xi

Subject to :
N∑

i=1

xi = 1, (1.19)

with constants ci ≥ 0. First, we calculate the Lagrangian

L(x, ν) = −
N∑

i=1

ci log xi + ν(
N∑

i=1

xi − 1), (1.20)

which has a maximum in the xis at xi = ci/ν. The dual problem is then

Maximize : g(ν) = −
N∑

i=1

ci log(ci/ν) +
N∑

i=1

ci − ν. (1.21)

The maximum of the dual problem can be found by setting the derivative equal
to zero and solving. We find that ν∗ =

∑N
i=1 ci is the maximum, with g(ν∗) =
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−∑N
i=1 ci log(ci/

∑N
i=1 ci). Since f(x) = g(ν∗) is feasible with xi = ci/

∑N
i=1 ci,

this is the minimizing solution to the primal problem.
Since τi1 is dependent only on the first observation, we can calculate using

Bayes’ Theorem:

τi1 =
πibi(O1)∑N

j=1 πjbj(O1)
. (1.22)

Our solution to (1.19) gives us the values πi which maximize Q1:

πi =
τ (k)
i1∑N

j=1 τ (k)
i1

= τ (k)
i1 =

π(k)
i b(k)

i (O1)∑N
j=1 π(k)

j b(k)
j (O1)

. (1.23)

Similarly, we can use the solution to (1.19) to give us the values aij which
maximize Q2:

aij =
∑T−1

t=1 τ (k)
ijt∑N

j=1

∑T−1
t=1 τ (k)

ijt

. (1.24)

Noting that τit =
∑N

j=1 τijt for t = 1, . . . , T − 1, we have

aij =
∑T−1

t=1 τ (k)
ijt∑T−1

t=1 τ (k)
it

. (1.25)

If the outputs of the model are discrete, we can apply our solution to (1.19)
once more by noting that

Q3 =
N∑

i=1

T∑
t=1

M∑
m=1

τ (k)
it δ(Ot −m) log bi(m), (1.26)

and so therefore the output probability distributions that maximize Q3 are

bi(m) =
∑T

t=1 τ (k)
it δ(Ot −m)∑T
t=1 τ (k)

it

. (1.27)

where m is a possible output symbol. If the outputs of the model are con-
tinuous, then there is no general explicit formula for the maximum value of
the output distribution parameters. However, for certain special forms of the
output distribution, the maximizing values can be calculated analytically. For
example, in the case of multivariate Gaussian output distributions (bi(y) =
n(det(Σi))−1/2 exp(−(y−µi)T Σ−1

i (y−µi)/2), where n is a normalizing factor),
we have:

Q3 =
N∑

i=1

T∑
t=1

τ (k)
it

(
log n− 1

2
log det(Σi)− 1

2
(Ot − µi)T Σ−1

i (Ot − µi)
)

=
N∑

i=1

T∑
t=1

τ (k)
it

(
log n− 1

2
log det(Σi)− 1

2
(mi − µi)T Σ−1

i (mi − µi)

− 1
2
(Ot −mi)T Σ−1

i (Ot −mi)
)

,

(1.28)
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where mi =
∑T

t=1 τ (k)
it Ot/

∑T
t=1 τ (k)

it . Let

Si =
∑T

t=1 τ (k)
it (Ot −mi)(Ot −mi)T∑T

t=1 τ (k)
it

. (1.29)

Then

Q3 =
T∑

t=1

N∑
i=1

τ (k)
it

(
log n +

1
2

log det(Σ−1
i )

− 1
2
(mi − µi)T Σ−1

i (mi − µi)− 1
2

TrΣ−1
i Si

)
. (1.30)

Since Σi is positive definite, we see that Q3 is maximized in the µis when

µi = mi =
∑T

t=1 τ (k)
it Ot∑T

t=1 τ (k)
it

. (1.31)

Given a maximizing solution for µi, we can solve for Σi directly by taking the
derivative. For a D-by-D matrix A, let the matrix B be such that

{B}ij = cofji(A). (1.32)

Then we have

AB = det(A)I
B = det(A)A−1

{B}ij = det(A){A−1}ij , (1.33)

and therefore

∂ det(A)
∂{A}ij

=
∂

∂{A}ij

D∑
i=1

{A}ij cofij(A) = cofij(A) = {B}ji = det(A){A−1}ji,

(1.34)
and

∂ log det(A)
∂{A}ij

= {A−1}ji. (1.35)

Using these relations, we calculate the derivative of Q3 with respect to each
element of the Σ−1

i s (neglecting constant factors) and set the result equal to
zero:

∂Q3

∂{Σ−1
i }ab

= {Σi}ba − {Si}ba = 0. (1.36)

From this we see that Q3 has a critical point in the Σis at

Σi = Si =
∑T

t=1 τ (k)
it (Ot − µ(k+1)

i )(Ot − µ(k+1)
i )T∑T

t=1 τ (k)
it

. (1.37)
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Since Q3 is concave this is a global maximum.
How do we calculate the probabilities τit and τijt? To do so, we make use of

the lattice structure of the HMM to perform an iterative calculation, known as
the forward-backward procedure. Consider the forward variable αt(i) defined as

αt(i) = P (O1 · · ·Ot, Zit = 1|λ). (1.38)

This is the probability of observing the partial sequence O1 · · ·Ot and that
the system is in state i at time t, given the model λ. We can solve for αt(i)
inductively as follows:

1. Initialization:
α1(i) = πibi(O1), i = 1, . . . , N. (1.39)

2. Induction:

αt+1(j) =

[
N∑

i=1

αt(i)aij

]
bj(Ot+1), t = 1, . . . , T − 1,

j = 1, . . . , N. (1.40)

This is an O(N2T ) computation. Note that it also gives us an efficient way to
calculate the value of the objective function, since

P (O|λ) =
N∑

i=1

αT (i). (1.41)

As the second part of the forward-backward procedure, we consider the
backward variable βt(i) defined as

βt(i) = P (Ot+1 · · ·OT |Zit = 1,λ). (1.42)

This is the probability of observing the partial sequence Ot+1 · · ·OT , given that
the system is in state i at time t and the model λ. Once again we can solve for
βt(i) inductively:

1. Initialization:
βT (i) = 1, i = 1, . . . , N. (1.43)

2. Induction:

βt(i) =
N∑

j=1

aijbj(Ot+1)βt+1(j), t = T − 1, . . . , 1,

i = 1, . . . , N. (1.44)

This is also an O(N2T ) computation.
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Now we can calculate the probabilities τ using the forward and backwards
variables.

τit = P (Zit = 1|O,λ)

=
P (Zit = 1|O,λ)P (O|λ)

P (O|λ)

=
P (Zit = 1|λ)

P (O|λ)

=
P (O1 · · ·Ot, Zit = 1|λ)P (Ot+1 · · ·OT |Zit = 1,λ)

P (O|λ)

=
αt(i)βt(i)
P (O|λ)

=
αt(i)βt(i)∑N
i=1 αt(i)βt(i)

(1.45)

is the probability of being in state i at time t, given the observation sequence
and the model. Note that we can use τit to solve for the individually most likely
state qt at time t, as

qt = argmax
1≤i≤N

(τit), t = 1, . . . , T. (1.46)

We can also calculate τijt, the probability of being in state i in time t and
state j at time t + 1, given the model and the observation sequence. Using our
definitions of the forward-backward variables, we can write

τijt = P (Zit = 1, Zj,t+1 = 1|O,λ)

=
P (Zit = 1, Zj,t+1 = 1, O|λ)

P (O|λ)

=
P (O1 · · ·Ot, Zit = 1|λ)P (Ot+1 · · ·OT , Zj,t+1 = 1|Zit = 1,λ)

P (O|λ)

=
αt(i)P (Ot+1, Zj,t+1 = 1|Zit = 1,λ)P (Ot+2 · · ·OT |Zj,t+1 = 1,λ)

P (O|λ)

=
αt(i)P (Zj,t+1 = 1|Zit,λ)P (Ot+1|Zit = 1, Zj,t+1 = 1,λ)βt+1(j)

P (O|λ)

=
αt(i)aijbj(Ot+1)βt+1(j)∑N

i=1

∑N
j=1 αt(i)aijbj(Ot+1)βt+1(j)

. (1.47)

1.6 Finite mixture models and HMMs

A finite mixture model [15] λfmm with R components is composed of the mixture
parameters w = (w1, . . . , wR) and the observation probability density functions
associated with each mixture component, br(m) for discrete output symbols,
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or br(y, θr1, . . . , θrM ) for continuous outputs. In general, we wish to solve the
following problem:

Maximize :
T∏

t=1

P (Ot|λfmm)

Subject to :
R∑

r=1

wr = 1

wr ≥ 0, r = 1, . . . , R
M∑

m=1

br(m) = 1, r = 1, . . . , R

br(m) ≥ 0, r = 1, . . . , R, m = 1, . . . ,M. (1.48)

We can express the objective function in terms of the model parameters as
follows:

T∏
t=1

P (Ot|λfmm) =
T∏

t=1

R∑
r=1

wrbr(Ot). (1.49)

In the case of continuous outputs, the last constraint is replaced by∫
Y

br(y)dy = 1, r = 1, . . . , R

br(y) ≥ 0, r = 1, . . . , R, y ∈ Y. (1.50)

Once again we use the EM method to solve this optimization problem [12].
We can represent the complete data log likelihood for the finite mixture model
as

R∑
r=1

T∑
t=1

zrt log wrbr(Ot) (1.51)

where z = (z1, . . . , zT ) is a set of component indicator vectors such that zrt = 1
if the observation is drawn from the rth mixture component, zrt = 0 otherwise.
From this we can calculate

Q(λfmm,λ(k)
fmm) =

R∑
r=1

T∑
t=1

τ (k)
rt log wrbr(Ot) (1.52)

where
τrt = P (Zrt = 1|Ot,λfmm) t = 1, . . . , T (1.53)

and Z is a probabilistic component indicator variable analogous to z. We can
calculate τ (k)

it via Bayes’ Rule:

τ (k)
rt =

w(k)
r b(k)

r (Ot)∑R
r=1 w(k)

r b(k)
r (Ot)

. (1.54)
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We choose updates of wr and br that maximize Q. We can find the update for
wr using our solution to (1.19):

wr =
∑T

t=1 τ (k)
rt∑T

t=1

∑R
r=1 τ (k)

rt

=
1
T

T∑
t=1

τ (k)
rt . (1.55)

To find the update rule for br we find the maximum directly via the derivative,
solving

∂LF

∂θrm
=

T∑
t=1

τ (k)
rt

∂

∂θrm
log br(Ot, θrm) = 0, (1.56)

which has no general analytical solution. As in the HMM case, for certain forms
of the output distribution an analytic solution is available.

The hidden Markov model can be seen as a special case of finite mixture
model, one in which there is a single observation O and NT mixture components,
each corresponding to a different state sequence Q. In this view we have

wQ = πq1aq1q2aq2q3 · · · aqT−1qT , (1.57)
bQ(O) = bq1(O1)bq2(O2) · · · bqT (OT ). (1.58)

We can also construct a hidden Markov model whose state outputs are
themselves finite mixture models. For example, if each finite state of the
model has R mixture components, then the model is λ = (π, A, w,B) where
w = (w11, . . . , wNR), B = (b11, . . . , bNR) and π and A retain their original
meanings. Let W = (w1r1 , . . . , wNrN ) be some choice of mixture components
for each model state. Then for this model we have

P (O|λ) =
∑

all W,Q

πq1wq1rq1
bq1rq1

(O1)aq1q2wq2rq2
bq2rq2

(O2) · · ·

· · · aqT−1qT wqT rqT
bqT rqT

(OT ). (1.59)

Calculation of the forward and backward parameters proceeds as follows:

1. Initialization:

αt(i) = πi

R∑
r=1

wirbir(O1), i = 1, . . . , N. (1.60)

βT (i) = 1, i = 1, . . . , N. (1.61)

2. Induction:

αt+1(j) =

[
N∑

i=1

αt(i)aij

]
R∑

r=1

wjrbjr(Ot+1), t = 1, . . . , T − 1,

j = 1, . . . , N. (1.62)

βt(i) =
N∑

j=1

aij

(
R∑

r=1

wjrbjr(Ot+1)

)
βt+1(j), t = T − 1, . . . , 1,

i = 1, . . . , N. (1.63)
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Derivation of this procedure follows that of the forward-backward procedure for
the standard hidden Markov model. Once the forward and backward variables
have been calculated, we can derive τit and τijt according to (1.45) and (1.47),
with the difference that

τijt =
αt(i)aij

(∑R
r=1 wjrbjr(Ot+1)

)
βt+1(j)∑N

i=1

∑N
j=1 αt(i)aijbj(Ot+1)βt+1(j)

. (1.64)

This allows us to re-estimate at π and A at each iteration using (1.23) and
(1.24). Now we have

τirt = P (Zirt = 1|O,λ)
= P (Zirt = 1|Zit = 1, O,λ)P (Zit|O, λ)

=
wirbir(Ot)∑R

r=1 wirbir(Ot)
τit (1.65)

We can re-estimate the mixture weights according to:

wir =
∑T

t=1 τ (k)
irt∑R

r=1

∑T
t=1 τ (k)

irt

=
∑T

t=1 τ (k)
irt∑T

t=1 τ (k)
it

. (1.66)

Again there is no general form for the output distributions, but in the special
case of Gaussian outputs for each mixture model component we have,

µir =
∑T

t=1 τ (k)
irt Ot∑T

t=1 τ (k)
irt

, (1.67)

Σir =
∑T

t=1 τ (k)
irt (Ot − µ(k+1)

i )(Ot − µ(k+1)
i )T∑T

t=1 τ (k)
irt

. (1.68)

It is worth noting that this model reduces to a simple finite mixture model
in the case that the hidden Markov model has but one state. Therefore, hidden
Markov models and finite mixture models can each be seen as special cases of
the other.


